Menu
Advertisement
Advertisement
Advertisement

Factorial

FACTORIAL

Chapter 7 of the sources is dedicated to the concept of Factorials, which serves as a vital mathematical tool for the principles of counting and probability discussed in the surrounding chapters.


Key Concepts and Formulas

πŸ’‘

The Factorial Formula (n!n!)

The product of the first nn positive integers is called nn factorial.

n!=nΓ—(nβˆ’1)Γ—(nβˆ’2)Γ—β‹―Γ—1n! = n \times (n - 1) \times (n - 2) \times \dots \times 1

πŸ’‘

The Zero Convention

By mathematical convention, 0!=10! = 1 .

πŸ’‘

The Recursive Property

For any integer i≀ni \le n, you can β€œstop” the factorial expansion at any point by adding a factorial sign to the remaining product.

  • Formula: n!=nΓ—(nβˆ’1)Γ—β‹―Γ—(nβˆ’i+1)Γ—(nβˆ’i)!n! = n \times (n - 1) \times \dots \times (n - i + 1) \times (n - i)!.
  • Example: 5!=5Γ—4!5! = 5 \times 4! or 5!=5Γ—4Γ—3!5! = 5 \times 4 \times 3!.

Examples for Understanding

1. Applied Counting

In an 8-athlete race with no ties, the total possible ways they can finish is the product of available spots:

8Γ—7Γ—6Γ—5Γ—4Γ—3Γ—2Γ—1=8!8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = \mathbf{8!}

2. Simplifying Fractions

To simplify 6!3!\frac{6!}{3!}, you expand the larger factorial until it matches the smaller one, allowing them to cancel out:

6Γ—5Γ—4Γ—3!3!=6Γ—5Γ—4=120\frac{6 \times 5 \times 4 \times 3!}{3!} = 6 \times 5 \times 4 = \mathbf{120}

3. Expressing Products as Factorials

To express 25Γ—24Γ—2325 \times 24 \times 23 as a factorial, you complete the sequence down to 1 and then divide by the part you added:

25Γ—24Γ—23Γ—(22Γ—21Γ—β‹―Γ—1)22Γ—21Γ—β‹―Γ—1=25!22!\frac{25 \times 24 \times 23 \times (22 \times 21 \times \dots \times 1)}{22 \times 21 \times \dots \times 1} = \mathbf{\frac{25!}{22!}}


Practice Questions and Solutions

Q1

Solving for nn

If (nβˆ’1)!(nβˆ’3)!=6\frac{(n-1)!}{(n-3)!} = 6, find the value of nn.

View Detailed Solution β–Ό

Expand (nβˆ’1)!(n-1)! until it reaches (nβˆ’3)!(n-3)!: (nβˆ’1)(nβˆ’2)(nβˆ’3)!(nβˆ’3)!=6β€…β€ŠβŸΉβ€…β€Š(nβˆ’1)(nβˆ’2)=6\frac{(n-1)(n-2)(n-3)!}{(n-3)!} = 6 \implies (n-1)(n-2) = 6 n2βˆ’3n+2=6β€…β€ŠβŸΉβ€…β€Šn2βˆ’3nβˆ’4=0n^2 - 3n + 2 = 6 \implies n^2 - 3n - 4 = 0 (nβˆ’4)(n+1)=0(n-4)(n+1) = 0 Since nn must be a positive integer, n=4n = 4.

Q2

Expression Conversion

Express 7Γ—64Γ—3\frac{7 \times 6}{4 \times 3} in terms of factorials.

View Detailed Solution β–Ό

Multiply by the missing numbers to create full factorial sequences: (7Γ—6Γ—5!)Γ—2!5!Γ—(4Γ—3Γ—2!)=7!Γ—2!5!Γ—4!\frac{(7 \times 6 \times 5!) \times 2!}{5! \times (4 \times 3 \times 2!)} = \mathbf{\frac{7! \times 2!}{5! \times 4!}}

Q3

Equating Factorials

If 1(nβˆ’4)!=20(nβˆ’2)!\frac{1}{(n-4)!} = \frac{20}{(n-2)!}, calculate nn.

View Detailed Solution β–Ό
  1. Cross-multiply: (nβˆ’2)!=20(nβˆ’4)!(n-2)! = 20(n-4)!.
  2. Expand (nβˆ’2)!(n-2)! to (nβˆ’2)(nβˆ’3)(nβˆ’4)!(n-2)(n-3)(n-4)!.
  3. (nβˆ’2)(nβˆ’3)(nβˆ’4)!=20(nβˆ’4)!(n-2)(n-3)(n-4)! = 20(n-4)!.
  4. (nβˆ’2)(nβˆ’3)=20(n-2)(n-3) = 20. n2βˆ’5n+6=20β€…β€ŠβŸΉβ€…β€Šn2βˆ’5nβˆ’14=0n^2 - 5n + 6 = 20 \implies n^2 - 5n - 14 = 0 (nβˆ’7)(n+2)=0(n-7)(n+2) = 0 Thus, n=7n = 7.
Q4

Basic Calculation

Find the value of the expression 6Γ—5Γ—4!4\frac{6 \times 5 \times 4!}{4}.

View Detailed Solution β–Ό

6Γ—5=306 \times 5 = 30, and 4!=244! = 24. 30Γ—244=30Γ—6=180\frac{30 \times 24}{4} = 30 \times 6 = \mathbf{180}


πŸ’‘

The Countdown Analogy

Think of a factorial as a β€œStrict Countdown.”

If you are launching a rocket from T-minus 10 (10!10!), you must count every single integer down to 1. If you decide to stop at T-minus 4 to take a break, you have completed the first part of the product (10Γ—9Γ—8Γ—7Γ—6Γ—510 \times 9 \times 8 \times 7 \times 6 \times 5) but you still have the β€œrest of the countdown” (4!4!) waiting to be finished later.

Sponsored Content

finding (solutions) x

A public notebook and learning hub.