Menu

Graded Assignment 2

This assignment covers important topics in linear algebra, from solving systems of equations to modeling real-world problems.

Q1

Maximum Profit from a Quadratic Model

In a particular year, the profit (in lakhs of Rs.) of Star Fish company is given by the polynomial P(x)=ax2+bx+cP(x) = ax^2 + bx + c where xx denotes the number of months since the beginning of the year.

  • January (x=1x=1): Loss of Rs. 45 lakhs.
  • February (x=2x=2): Loss of Rs. 19 lakhs.
  • March (x=3x=3): Profit of Rs. 3 lakhs.

Find the maximum profit and the month in which it occurs.

πŸ’‘

Quadratic Extrema

The maximum or minimum of a quadratic function P(x)=ax2+bx+cP(x) = ax^2 + bx + c occurs at its vertex, where xv=βˆ’b2ax_v = -\frac{b}{2a}.

πŸ“ View Detailed Solution β–Ό
  1. Set up the system of equations:

    {a(1)2+b(1)+c=βˆ’45a(2)2+b(2)+c=βˆ’19a(3)2+b(3)+c=3β€…β€ŠβŸΉβ€…β€Š{a+b+c=βˆ’45(1)4a+2b+c=βˆ’19(2)9a+3b+c=3(3)\begin{cases} a(1)^2 + b(1) + c = -45 \\ a(2)^2 + b(2) + c = -19 \\ a(3)^2 + b(3) + c = 3 \end{cases} \implies \begin{cases} a + b + c = -45 \quad (1) \\ 4a + 2b + c = -19 \quad (2) \\ 9a + 3b + c = 3 \quad (3) \end{cases}
  2. Solve for a,b,ca, b, c:

    • (2)βˆ’(1)β€…β€ŠβŸΉβ€…β€Š3a+b=26(2) - (1) \implies 3a + b = 26
    • (3)βˆ’(2)β€…β€ŠβŸΉβ€…β€Š5a+b=22(3) - (2) \implies 5a + b = 22
    • Subtracting these: 2a=βˆ’4β€…β€ŠβŸΉβ€…β€Ša=βˆ’22a = -4 \implies a = -2.
    • Substitute aa: 3(βˆ’2)+b=26β€…β€ŠβŸΉβ€…β€Šb=323(-2) + b = 26 \implies b = 32.
    • Substitute a,ba, b: βˆ’2+32+c=βˆ’45β€…β€ŠβŸΉβ€…β€Šc=βˆ’75-2 + 32 + c = -45 \implies c = -75.

    The profit function is P(x)=βˆ’2x2+32xβˆ’75P(x) = -2x^2 + 32x - 75.

  3. Find the Maximum: Since a=βˆ’2<0a = -2 < 0, the parabola opens downwards (max).

    xmax=βˆ’322(βˆ’2)=8(August)x_{max} = -\frac{32}{2(-2)} = 8 \quad (\text{August})

    Max Profit:

    P(8)=βˆ’2(64)+32(8)βˆ’75=βˆ’128+256βˆ’75=53P(8) = -2(64) + 32(8) - 75 = -128 + 256 - 75 = 53

Answer: Maximum profit is Rs. 53 Lakhs in August.

Q2

Properties of Augmented Matrices

If AA be a 3Γ—43 \times 4 matrix and bb be a 3Γ—13 \times 1 matrix, analyze the properties of the augmented matrix [A∣b][A|b].

πŸ“ View Detailed Solution β–Ό

Let’s analyze the statements based on Gaussian Elimination principles:

  1. Row Operations & Solutions: Elementary row operations do not change the solution set. The systems Ax=bAx=b and Aβ€²x=bβ€²A'x=b' (where (Aβ€²βˆ£bβ€²)(A'|b') is obtained from row ops) are equivalent. (True)
  2. RREF & Existence: Having an RREF (Aβ€²βˆ£bβ€²)(A'|b') does not guarantee a solution. If a row like [0Β 0Β 0 ∣ 1][0 \ 0 \ 0 \ | \ 1] exists, the system is inconsistent. (False)
  3. RREF Structure: If [A∣b][A|b] is in RREF, its submatrix AA is naturally in RREF. (True)
  4. Consistency Condition: If there is no row where the only non-zero entry is in the last column (i.e., no pivot in the augmented column), the system is consistent. (True)
Q3

Matrix Representation of a System

Ramya, Romy, and Farjana buy books. Let x1,x2,x3x_1, x_2, x_3 be prices of comic, horror, and novel respectively.

  • Ramya: 1 comic, 2 horror, 1 novel for 1000.
  • Romy: 2 comic, 5 horror, 1 novel for 2000.
  • Farjana: 4 comic, 5 horror, cc novels for dd.
πŸ“ View Detailed Solution β–Ό

System Setup:

[12125145c][x1x2x3]=[10002000d]\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 1 \\ 4 & 5 & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1000 \\ 2000 \\ d \end{bmatrix}

Analysis (∣A∣|A|):

det⁑(A)=1(5cβˆ’5)βˆ’2(2cβˆ’4)+1(10βˆ’20)=5cβˆ’5βˆ’4c+8βˆ’10=cβˆ’7\det(A) = 1(5c-5) - 2(2c-4) + 1(10-20) = 5c - 5 - 4c + 8 - 10 = c - 7
  • If cβ‰ 7c \neq 7, determinant is non-zero β€…β€ŠβŸΉβ€…β€Š\implies Unique Solution.
  • If c=7c = 7, determinant is zero β€…β€ŠβŸΉβ€…β€Š\implies No solution or Infinite solutions.
Q4

Homogeneous Systems

Let AA be an mΓ—nm \times n matrix such that m<nm < n. How many solutions does Ax=0Ax = 0 have?

πŸ’‘

Free Variables

Number of free variables = nβˆ’rank(A)n - \text{rank}(A). Since rank(A)≀m<n\text{rank}(A) \le m < n, there is always at least one free variable.

πŸ“ View Detailed Solution β–Ό

Since it is a homogeneous system (Ax=0Ax=0), the trivial solution x⃗=0⃗\vec{x}=\vec{0} always exists. Because m<nm < n (more variables than equations), there must be at least one free variable, leading to Infinitely many solutions.

Q5

Mobile Phone Sales

Three shops sell three brands R, S, T. Given PS=5P_S = 5 (in thousands).

  • Shop A: PR+3kPS+(3k+4)PT=61P_R + 3k P_S + (3k+4)P_T = 61
  • Shop B: PR+kPS+(4k+2)PT=65P_R + k P_S + (4k+2)P_T = 65
  • Shop C: PR+(2k+2)PS+(3k+4)PT=66P_R + (2k+2)P_S + (3k+4)P_T = 66
πŸ“ View Detailed Solution β–Ό

Substituting PS=5P_S = 5:

  1. PR+15k+(3k+4)PT=61P_R + 15k + (3k+4)P_T = 61
  2. PR+5k+(4k+2)PT=65P_R + 5k + (4k+2)P_T = 65
  3. PR+(10k+10)+(3k+4)PT=66P_R + (10k+10) + (3k+4)P_T = 66

Comparing (1) and (3): (1)βˆ’(3)β€…β€ŠβŸΉβ€…β€Š(15kβˆ’(10k+10))=61βˆ’66β€…β€ŠβŸΉβ€…β€Š5kβˆ’10=βˆ’5β€…β€ŠβŸΉβ€…β€Š5k=5β€…β€ŠβŸΉβ€…β€Šk=1(1) - (3) \implies (15k - (10k+10)) = 61 - 66 \implies 5k - 10 = -5 \implies 5k = 5 \implies k=1.

Substitute k=1k=1:

  • (A): PR+7PT=46P_R + 7P_T = 46
  • (B): PR+6PT=60P_R + 6P_T = 60

Subtracting: PT=βˆ’14P_T = -14. (Note: The problem values lead to a negative price, likely a typo in the original question data, but the mathematical process yields -14).

Q6-8

System Analysis

Consider the system:

{2x+3y+5z=1x+2y+3z=1x+y+2z=1\begin{cases} 2x+3y+5z=1 \\ x+2y+3z=1 \\ x+y+2z=1 \end{cases}
πŸ“ View Detailed Solution β–Ό

Q6: Number of Solutions R3β†’R3βˆ’R2R_3 \to R_3 - R_2 gives βˆ’yβˆ’z=0β€…β€ŠβŸΉβ€…β€Šy+z=0-y - z = 0 \implies y+z=0. Original x+y+2z=1x+y+2z=1 vs x+2y+3z=1x+2y+3z=1. Row reducing leads to a contradiction (0=βˆ’10 = -1), so 0 solutions.

Q7: Determinant of RREF Determinant is only defined for square matrices. RREF is a property, not a square transformation equivalent. (Technically undefined for non-square, or 0/1 for square singular/non-singular).

Q8: Solution Sum For the system: 7xβˆ’2y+z=57x - 2y + z = 5, 3yβˆ’z=13y - z = 1, βˆ’3x+4yβˆ’2z=10-3x + 4y - 2z = 10. Solving this yields x+y+z=βˆ’287/11x+y+z = -287/11.

Q9

Matrix Rank

Let A=[3Β 5Β 10Β 7]A = [3 \ 5 \ 10 \ 7]. Find the number of non-zero rows in the RREF of ATAA^T A.

πŸ’‘

Rank Theorem

rank(ATA)=rank(A)\text{rank}(A^T A) = \text{rank}(A).

πŸ“ View Detailed Solution β–Ό

AA is a 1Γ—41 \times 4 non-zero vector, so rank(A)=1\text{rank}(A) = 1. Therefore, rank(ATA)=1\text{rank}(A^T A) = 1. The number of non-zero rows in RREF is equal to the rank. Answer: 1.

Q10

Cubic Curve Fitting

Find aβˆ’b+cβˆ’da - b + c - d for f(x)=ax3+bx2+cx+df(x) = ax^3 + bx^2 + cx + d passing through (1,1),(2,7),(βˆ’1,βˆ’5),(3,23)(1,1), (2,7), (-1,-5), (3,23).

πŸ“ View Detailed Solution β–Ό

We need to find the value of the expression a(βˆ’1)2βˆ’b(βˆ’1)2+c(βˆ’1)2...a(-1)^2 - b(-1)^2 + c(-1)^2 ... wait, let’s look at the point (βˆ’1,βˆ’5)(-1, -5).

f(βˆ’1)=a(βˆ’1)3+b(βˆ’1)2+c(βˆ’1)+d=βˆ’a+bβˆ’c+d=βˆ’5f(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d = -a + b - c + d = -5

The question asks for aβˆ’b+cβˆ’da - b + c - d. Notice that aβˆ’b+cβˆ’d=βˆ’(βˆ’a+bβˆ’c+d)=βˆ’(βˆ’5)=5a - b + c - d = -(-a + b - c + d) = -(-5) = 5. Answer: 5.

Q11-13

Traffic Flow Network

Analysis of traffic flow conservation (In = Out).

  • NW: 2x1+x4=4002x_1 + x_4 = 400
  • NE: 2x1+3x2=10002x_1 + 3x_2 = 1000
  • SE: 3x2+2x3=9003x_2 + 2x_3 = 900
  • SW: 2x3+x4=c2x_3 + x_4 = c
πŸ“ View Detailed Solution β–Ό

Q12: South Street Flow (cc) Summing equations physically often cancels internal flows. However, solving the dependent system: c=300c = 300.

Q13: Max/Min Vehicles Based on constraints xiβ‰₯0x_i \ge 0:

  • 0≀x3≀1500 \le x_3 \le 150
  • a (West/North): Range [100, 400]
  • b (East/North): Range [600, 900]
  • c (East/South): Range [0, 300]
  • d (West/South): Range [0, 300]